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Abstract 

This study aimed to prove that there is no local equatorial characterization of zonoids in odd 

dimensions, this gives a negative answer to the conjecture posed by W. Weil in 1977 and shows 

that the local equatorial characterization of zonoids may be given only in even dimensions. In 

addition we prove a similar result for intersection bodies, we used the descriptive- deductive 

method, the study found that there is no local characterization of these bodies. 
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 المستخلص  

هدفت هذه الدراسة إلى إثبات إنه ليس هناك معيارللتساوى الموضعى للزونويد فى الأبعاد الفردية، هذا يعطى إجابة سلبية للتخمين  

حالة الأبعاد الزوجية. بالإضافة   و يبين إن المعيار للتساوى الموضعى للزونويد يمكن أن يعطى فقط فى   1977فى     الذى طرحه و.وييل 

أثبتنا نتيجة مماثلة للأجسام المتقاطعة، إستخدمنا المنهج الوصفى إنه ليس هناك معيار  -إلى إننا   الإستنباطى، توصلت الدراسة إلى 

 موضعى لهذه الإجسام. 

 تساوى ، زونويد ، أجسام متقاطعة  معيار   كلمات مفتاحية:

Introduction  

A zonoid in ℝ𝑛 is an origin symmetric 

convex body that can be approximated (in 

the Hausdorff metric) by finite Minkowski 

sums of line segments. It turns out that 

zonoids appear in many different contexts in 

convex geometry, physics, optimal control 

theory, and functional analysis (see [1], [3], 

[4]). One of the equivalent definitions of 

zonoids, useful in convex geometry, leads to 
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a notion of a projection body. An origin 

symmetric convex body 𝐿 in ℝ𝑛 is called a 

projection body is there exists another origin 

symmetric convex body 𝐾 such that the 

support function of 𝐿 in every direction is 

equal to the volume of the hyperplane 

projection of 𝐾 orthogonal to this direction: 

for every 

 𝜆 ∈ 𝑇𝑛−1, ℎ𝐿(𝜆) = Vol𝑛−1(𝐾|𝜆⊥), 𝜆⊥ =

{𝑦 ∈ ℝ𝑛: 𝜆. 𝑦 = 0}.  

The support function ℎ𝐿(𝜆) = max
𝑥∈𝐿

𝜆. 𝑥 is 

equal to the dual norm ‖𝜆‖𝐿∗ where 𝐿∗ 

stands for the polar body of 𝐿. From the 

above definition and Cauchy formula (see 

[15]), we immediately derive the following 

analytic definition, which will be useful for 

us in this study: An origin symmetric 

convex body 𝐿 ⊂ ℝ𝑛 is a zonoid if and only 

if  

ℎ𝐿(𝜆) = 𝐶𝑜𝑠𝜇(𝜆) ≔ ∫ |𝜆. 𝜃|𝑑𝜇(𝜃)
𝑇𝑛−1

 

with some even positive measure 𝜇 on 𝑇𝑛−1. 

Finally, a functional analytic definition 

shows that an origin symmetric convex body 

𝐿 ⊂ ℝ𝑛 is a zonoid if and only if it is a polar 

body to the unit ball of a subspace of 𝐿1. 

It is well known that every origin symmetric 

convex body in ℝ𝑛 is projection body, but 

this is no longer true in ℝ𝑛 for 𝑛 ≥ 3 (see 

[26], 

 [15]). It is an interesting question how to 

determine if a given convex body is a zonoid  

or not. It is very reasonable to assume that 

one can provide a strictly local 

characterization of zonoids. This question 

was posed repeatedly (see [26] , for the 

history of problem), however [28] showed 

that a local characterization of zonoids does 

not exist. In particular, he showed that there 

exists an origin symmetric convex 𝐶∞ body 

𝐾 ⊂ ℝ𝑛, 𝑛 ≥ 3, that is not a zonoid but has 

the following property: for every 𝑢 ∈ 𝑇𝑛−1 

there exists a zonoid 𝑍𝑢 centered at the 

origin and a neighborhood 𝑈𝑢 ⊂ 𝑇𝑛−1 of 𝑢 

such that the boundaries of 𝐾 and 𝑍𝑢 

coincide at all points where the exterior unit 

normal vectors belong to 𝑈𝑢. Thus, no 

characterization of zonoids that involves 

only arbitrarily small neighborhoods of 

boundary points is possible.(see [28]) ,Weil 

proposed the following conjecture about 

local equatorial characterization of zonoids. 

Let 𝐿 ⊂ ℝ𝑛 be an origin symmetric convex  

body and assume that for any equator 𝜑 ⊂

𝑇𝑛−1, there exists a zonoid 𝑍𝜑 and a 

neighborhood 𝐸𝜑 of 𝜑 such that the 

boundaries of 𝐿 and 𝑍𝜑 coincide at all points 

where the exterior unit vector belongs to 
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𝐸𝜑 ; then 𝐿 is a zonoid. Affirmative answers 

for even dimensions were given 

independently by [23], [13] but the question 

was left open in odd dimensions. That was a 

consequence of the fact that the inversion 

formulas for the cosine transform are not 

local in odd dimensions (see [22]). 

In this study we show that the answer to the 

conjecture in odd dimensions is negative. 

We prove that in both cases (for odd and 

even dimensions) the answer can be 

obtained as a consequence of the 

characterization of zonoids in terms of 

sections of the polar body, given in [18]. In 

even dimensions the answer follows directly 

from the geometric inversion formula for 

Cosine transform [18]. The odd dimensional 

case,on the other hand, requires much more 

tricky and detailed analysis of the behavior 

of the inverse Cosine transform. 

Our main tool is the Fourier analytic 

inversion formula from [8] or [15]. It allows 

to obtain the results for zonoids together 

with the results about the intersection 

bodies. The notion of an intersection body of 

star body was introduced by [21]. 𝐾 is called 

the intersection body of 𝐿 if the radius of 𝐾 

in every direction is equal to the (𝑛 − 1)–

dimensional volume of the central 

hyperplane section of 𝐿 perpendicular to this 

direction: ∀𝜆 ∈ 𝑇𝑛−1 

𝜌𝑘(𝜆) = Vol𝑛−1(𝐿 ∩ 𝜆⊥), 𝜆⊥, 

where 𝜌𝑘(𝜆) = max{𝑎: 𝑎𝜆 ∈ 𝐾} is the 

radial function of body 𝐾. Passing to 

polar coordinates in 𝜆⊥, we derive the 

following analytic definition of an 

intersection body of star body: 𝐾 is 

called  the intersection body of 𝐿 if  

𝜌𝑘(𝜆) =
1

𝑛 − 1
𝜓𝜌𝐿

𝑛−1(𝜆)

≔
1

𝑛 − 1
∫ 𝜌𝐿

𝑛−1(𝜃)𝑑𝜃.
𝑇𝑛−1∩𝜆⊥

 

Here 𝜓 stands for the spherical Radon 

transform (see [22]). 

A more general class of intersection bodies 

was defined by ([5] and [29] as the closure 

of intersection bodies of star bodies in the 

radial metric 

 𝑑(𝐾, 𝐿) = sup𝜆∈𝑇𝑛−1|𝜌𝑘(𝜆) − 𝜌𝐿(𝜆)|.  

In this study we will consider only 𝐶∞ 

smooth intersection bodies: a body 𝐾 is an 

intersection body if there exists an even 

nonnegative function 𝑓 on 𝑇𝑛−1, such that 

the radial function of 𝐾 is a spherical Radon  

transform 𝜓𝑓 of 𝑓. Since we can always 

define 
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 𝐿: 𝜌𝐿
𝑛−1(𝜃) = (𝑛 − 1)𝑓(𝜃),  

we will not distinguish between intersection 

bodies of star bodies and intersection bodies. 

We prove that the local equatorial 

characterization of intersection bodies is not 

possible in odd dimensions. Namely, we 

show that one can construct an origin 

symmetric convex body 𝐿 ⊂ ℝ𝑛, 𝑛 ≥ 5 is 

odd, such that for any equator 

 𝜑 ⊂ 𝑇𝑛−1, there exists an intersection body 

𝐼𝜑 and a neighborhood 𝐸𝜑 of 𝜑 such that the 

boundaries of 𝐿 and 𝐼𝜑 coincide at all points 

of 𝐸𝜑 (i.e, 𝜌𝐿(𝜆) = 𝜌𝐼𝜑
(𝜆) for all 𝜆 ∈ 𝐸𝜑); 

but nevertheless, 𝐿 is not an intersection 

body. On the other hand, we show that the 

local equatorial characterization of 

intersection bodies is possible in even 

dimensions. 

We also extend the result of  [28] to the 

class of intersection bodies by proving that 

there is no local characterization of those 

bodies in odd and even dimensions.We 

prove that there exists an origin symmetric 

convex 𝐶∞ body 𝐾 ⊂ ℝ𝑛, 𝑛 ≥ 5, that is not 

an intersection body, but has the following 

property : for each 𝑢 ∈ 𝑇𝑛−1 there exists an 

intersection body 𝐼𝑢 centered at the origin 

and a neighborhood  

𝑈𝑢 ⊂ 𝑇𝑛−1 of 𝑢 such that the boundaries of 

𝐾 and 𝐼𝑢 coincide on 𝑈𝑢. In odd dimensions 

this is a consequence of the lack of a local 

equatorial characterization of intersection 

bodies mentioned above  but we give an 

independent proof that does not distinguish 

between even and odd dimensions. 

Our proofs for zonoids and intersection 

bodies are very similar, they are based on 

almost identical Fourier analytic inversion 

formulas for the Cosine and Radon 

transforms. This is one more indication of 

the remarkable duality between sections and 

projections (see[19]) . 

1. Auxiliary results 

Our main tool is the Fourier transform of 

distributions (see [9],[10] and [15] for exact 

definitions and properties) and the 

connections between the Cosine and the 

spherical Radon transforms and the Fourier 

transform. 

We start with the connection of the spherical 

Radon transform and the Fourier transform. 

A Koldobsky (see for example Lemma 3.7 

in [15]) proved that 

𝜓𝑔(𝜆) =
1

𝜋
𝑔̂(𝜆),             ∀𝜆 ∈ 𝑇𝑛−1 ,             (1) 
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provided that 𝑔 is an even homogeneous 

function of degree – 𝑛 + 1 on  
ℝ𝑛

{0}
 . 𝑛 > 1, 

satisfying 𝑔|𝑇𝑛−1 ∈ 𝐿1(𝑇𝑛−1). 

An immediate consequene of this formula is 

the following Fourier analytic a 

characterization of intersection bodies (see 

[15] Theorem 4.1): An origin symmetric star 

body 𝐾 is an intersection body if and only if 

𝜌𝐾 ,  extended to ℝ𝑛 as a homogeneous 

function of degree −1, represents a positive 

definite distribution on ℝ𝑛. When 𝐾 is 

infinitely smooth, this is equivalent to 𝜌𝐾  ̂ ≥

0. 

A very similar connection of the Cosine 

transform and the Fourier transform was 

established in ([18] see also [15]): 

𝐶𝑜𝑠𝑔(𝜆) =
2

𝜋
𝑔̂(𝜆),             ∀𝜆 ∈ 𝑇𝑛−1 ,             (2) 

provided that 𝑔 is an even homogeneous 

function of degree – 𝑛 − 1  

on  
ℝ𝑛

{0}
. 𝑛 > 1, satisfying 𝑔|𝑇𝑛−1 ∈

𝐿1(𝑇𝑛−1). 

As above, one can obtain a very similar 

Fourier analytic a characterization of 

zonoids  (see [15] Theorem 8.6): An origin 

symmetric star body 𝐾 is a zonoid if and 

only if ℎ𝐾 , extended to ℝ𝑛 as homogeneous 

function of degree 1, represents a negative 

definite distribution on ℝ𝑛. When 𝐾 is 

infinitely smooth, this is equivalent to ℎ𝐾̂ ≤

0.  

Our next tool is a formula connecting the 

Fourier transform of powers of the radial 

function with the derivatives of the parallel 

section function. Let 𝐷 be an infinitely 

smooth origin symmetric star body in 

ℝ𝑛, 𝜆 ∈ 𝑇𝑛−1,  and let 

 𝜆⊥ = {𝑥 ∈ ℝ𝑛: 𝑥. 𝜆 = 0}. We denote by  

𝐴𝐷,𝜆(𝑠) = Vol𝑛−1(𝐷 ∩ {𝜆⊥ + 𝑠𝜆}), 𝑠

∈ ℝ, 

The parallel section function of 𝐷 in the 

direction of 𝜆. The following formula was 

proved in [8] see [15]: for any 𝜆 ∈ 𝑇𝑛−1 and 

𝑘 ∈ ℕ, 𝑘 ≠ 𝑛 − 1, 

𝜌𝐷
𝑛−𝑘−1̂ (𝜆) = (−1)

𝑘+1
2 𝜋(𝑛 − 𝑘 − 1)𝐴𝐷,𝜆

𝑘 (0),            (3) 

when 𝑘 is even, and  

𝜌𝐷
𝑛−𝑘−1̂ (𝜆)

= (−1)
𝑘+1

2 2(𝑛 − 𝑘

− 1)𝑘! ∫
𝐴𝐷,𝜆(𝑧) − 𝐴𝐷,𝜆(0) − ⋯ − 𝐴𝐷,𝜆

(𝑘−1)
(0)

𝑧𝑘+1

(𝑘 − 1)!

𝑧𝑘+1 𝑑𝑧
∞

0

,            (4) 

when 𝑘 is odd. 

As a consequence of equations (1), (3) and 

(4) with 𝑘 = 𝑛 − 2, we obtain the  
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Fourier analytic a characterization of 

intersection bodies ( see [15]). 

Let 𝐿 be an origin symmetric star body in 

ℝ𝑛 such that 𝜌𝐿 is infinitely differentiable 

on 𝜆 ∈ 𝑇𝑛−1. The body 𝐿 is an intersection 

body if and only if ∀𝜆 ∈ 𝑇𝑛−1, 

(−1)
𝑛−2

2 𝐴𝐿,𝜆
(𝑛−2)(0) ≥ 0,                    (5) 

when 𝑛 is even, and  

(−1)
𝑛−1

2 ∫
𝐴𝐿,𝜆(𝑧) − 𝐴𝐿,𝜆(0) − ⋯ − 𝐴𝐿,𝜆

(𝑛−3)(0)
𝑧𝑛−3

(𝑛 − 3)!

𝑧𝑛−1
𝑑𝑧 ≥ 0

∞

0

,         (6) 

when 𝑛 is odd. 

Similarly, using the duality relation ℎ𝐷 =

𝜌𝐷∗
−1 and equations (2), (3) and (4) with 𝑘 =

𝑛, one can obtain the following 

characterization of of zonoids (see [18] or 

[15]). Let 𝐿 be an origin symmetric convex 

body in ℝ𝑛 such that ℎ𝐿 is infinitely 

differentiable on 𝑇𝑛−1. The body 𝐿 is a 

zonoid  (projection body) if and only if ∀𝜆 ∈

𝑇𝑛−1, 

(−1)
𝑛
2𝐴𝐿∗,𝜆

(𝑛) (0) ≥ 0,                    (7) 

when 𝑛 is even, and  

(−1)
𝑛+1

2 ∫
𝐴𝐿∗,𝜆(𝑧) − 𝐴𝐿∗,𝜆(0) − ⋯ − 𝐴𝐿∗,𝜆

(𝑛−1)(0)
𝑧𝑛−1

(𝑛 − 1)!

𝑧𝑛+1
𝑑𝑧 ≥ 0

∞

0

,         (8) 

when 𝑛 is odd. 

2. There is no local equatorial 

characterization of intersection 

bodies in odd dimensions. 

To construct counterexample, it is natural to 

use (6). This formula shows that one has to 

use the information about the section 

function 𝐴𝐿,𝜆(𝑧) of the body along the 

whole range of 𝑧. For 0 < 𝜖 < 1 and 𝜆 ∈

𝑇𝑛−1, we denote by 𝑈𝜖(𝜆) the union of caps 

centered at 𝜆 and – 𝜆: 

𝑈𝜖(𝜆) ≔ {𝜃 ∈ 𝑇𝑛−1: |𝜃. 𝜆| ≥ √1 − 𝜖2}. 

We denote by 𝐸𝜖(𝜆), 0 < 𝜖 < 1, the 

neighborhood of the equator 𝑇𝑛−1 ∩ 𝜆⊥: 

𝐸𝜖(𝜆) ≔ {𝜃 ∈ 𝑇𝑛−1: |𝜃. 𝜆| < 𝜖}. 

The following result is crucial for the 

construction of the counterexample. Its 

proof is based on the fact that the inversion 

formula (6) is not local. 

Lemma 3.1. Let 𝑛 ≥ 3 be odd. Then there 

exists an 𝜖 > 0 and an absolute constant 𝑐 >

0 such that for any 𝑥, 𝜆 ∈ 𝑇𝑛−1, there exists 

an even function 𝑓𝑥,𝜆 satisfying 𝑓𝑥,𝜆 = 0 on 

𝐸𝜖(𝑥), and 

 𝜓−1𝑓𝑥,𝜆 > 𝑐 on 𝑈𝜖(𝜆). 

Proof. First, we fix 𝑥, 𝜆 ∈ 𝑇𝑛−1 and find 

𝜖 = 𝜖(𝑥, 𝜆) and 𝑐 = 𝑐(𝑥, 𝜆) satisfying the 
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requirement of the lemma. Then we use the 

compactness argument to produce absolute 𝜖 

and 𝑐. 

For fixed 𝑥, 𝜆 ∈ 𝑇𝑛−1 and some small 𝜖 > 0 

we take two auxiliary infinitely smooth 

symmetric star bodies 𝑀, 𝑄, such that 𝜌𝑀 =

𝜌𝑄 on the closure of 𝐸𝜖(𝜆) ∪ 𝐸𝜖(𝑥), and 

𝜌𝑀 > 𝜌𝑄 otherwise. We put 𝑓𝑥,𝜆 =

(−1)
𝑛−1

2 (𝜌𝑀 − 𝜌𝑄 ). Then 𝑓𝑥,𝜆 = 0 on 

𝐸𝜖(𝑥), and 𝜌𝑀 = 𝜌𝑄 on 𝐸𝜖(𝜆) implies 

 𝐴𝑀,𝜆
𝑘 (0) = 𝐴𝑄,𝜆

𝑘 (0), 𝑘 = 0,1, … , 𝑛 − 3.  

Thus (1) and (4) with 𝑘 = 𝑛 − 2 imply 

 𝜓−1𝑓𝑥,𝜆(𝜆) = (−1)
𝑛−1

2 (𝜓−1𝜌𝑀(𝜆) −

𝜓−1𝜌𝑄(𝜆)) = (−1)𝑛−1(2𝜋)𝑛−1(𝑛 −

2)! ∫
𝐴𝑀,𝜆(𝑧)−𝐴𝑄,𝜆(0)

𝑧𝑛−1 𝑑𝑧 > 0
∞

0
, 

since 𝑄 ⊆ 𝑀. We proved that for fixed 

𝑥, 𝜆 ∈ 𝑇𝑛−1 there exists 𝜖′ = 𝜖′(𝑥, 𝜆) > 0 

and 𝑐′ = 𝑐′(𝑥, 𝜆) > 0 such that there exists 

an even function 𝑓𝑥,𝜆 satisfying 𝑓𝑥,𝜆 = 0 on 

𝐸𝜖(𝑥), and 𝜓−1𝑓𝑥,𝜆(𝜆) ≥ 𝑐′. The function 

𝜓−1𝑓𝑥,𝜆 is continuous on 𝑇𝑛−1 since 𝑀, 𝑄 

are infinitely smooth (see [15] Lemma 2.4). 

Hence, 

 𝜓−1𝑓𝑥,𝜆 ≥ 𝑐 > 0 on 𝑈𝜖″(𝜆), for some 𝜖″ >

0 and 𝑐 = 𝑐(𝑥, 𝜆).  

Put 𝜖̃ = 𝜖̃(𝑥, 𝜆) = min(𝜖′, 𝜖″). We prove 

that for any 𝑥 and 𝜆, there is 

 𝜖̃ = 𝜖̃(𝑥, 𝜆) > 0 and a function 𝑓𝑥,𝜆 such 

that 𝑓𝑥,𝜆 = 0 on 𝐸𝜖̃(𝑥), but 𝜓−1𝑓𝑥,𝜆 ≥ 𝑐 on 

𝑈𝜖̃(𝜆), 𝑐 = 𝑐(𝑥, 𝜆).  

Now we use the compactness argument to 

show that we can choose 𝜖̃ and 𝑐 

independent of 𝑥 and 𝜆. We choose a finite 

set of pairs {𝑥𝑖 , 𝜆𝑖}𝑖=1
𝑚  such that {𝑈𝜖̃

2

(𝑥𝑖) ×

𝑈𝜖̃

2

(𝜆𝑖)}
𝑖=1

𝑚

 cover 𝑇𝑛−1 × 𝑇𝑛−1. We take  

𝜖 =
1

2
min

1≤𝑖≤𝑚
𝜖𝑖̃ and 𝑐 = min

1≤𝑖≤𝑚
𝑐(𝑥𝑖, 𝜆𝑖). 

Then, for any (𝑥, 𝜆), there is a pair (𝑥𝑖, 𝜆𝑖) 

such that 

 (𝑥, 𝜆) ∈ 𝑈𝜖̃

2

(𝑥𝑖) × 𝑈𝜖̃

2

(𝜆𝑖) and thereby 

 𝐸𝜖(𝑥) × 𝑈𝜖(𝜆) ⊂ 𝐸𝜖̃𝑖
(𝑥𝑖) × 𝑈𝜖̃𝑖

(𝜆𝑖).  

Finally, we may define 𝑓𝑥,𝜆 = 𝑓𝑥𝑖,𝜆𝑖
 (see 

[22]). 

Remark 3.2. Note that, dilating 𝑀 and 𝑄 

(and thus functions 𝑓𝑥,𝜆), we may assume 

that 𝑐 is as large as we want. By the 

technical resons that will become clear later, 

we take 𝑐 = 2𝜓−11. Moreover, we can 

assume that the set of functions 

{𝑓𝑥,𝜆}
𝑥,𝜆∈𝑇𝑛−1 in the lemma is finite. 
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Let 𝐶+
∞ be the class of origin symmetric 

convex bodies with 𝐶∞ boundary and 

everywhere positive Gaussian curvature (see 

[6]). The following auxiliary result seems to 

be well-known. It is interesting to note that 

it is not true without the 𝐶+
∞ assumption 

though (see [26] [14], [20], [2]). 

Lemma 3.3. Let 𝑀 ∈ 𝐶+
∞ and let 

 𝐾(𝑠) = 𝑠𝐵2
𝑛 + (1 − 𝑠)𝑀 be Minkowski 

sum of 𝑠𝐵2
𝑛 and (1 − 𝑠)𝑀, 𝑠 ∈ [0,1]. Then 

the map 

 𝑠 → 𝜓−1𝜌𝑘(𝑠)(𝜆), 𝜆 ∈ 𝑇𝑛−1, is continuous. 

Proof. We note first that for any fixed 𝑠 ∈

[0,1], the boundary 𝜕𝐾(𝑠) of 𝐾(𝑠) is 𝐶∞. 

Indeed, 𝜕𝐾(𝑠) can be parameterized as 

𝑢 ∈ 𝑇𝑛−1 → ∇ℎ(1−𝑠)𝑀 (𝑢) + 𝑠𝑢

= (1 − 𝑠)∇ℎ𝑀 (𝑢) + 𝑠𝑢, 

where 𝑢 ∈ 𝑇𝑛−1 → (1 − 𝑠)∇ℎ𝑀 (𝑢)  

is a parameterization of (1 − 𝑠)𝜕𝑀. Here 

∇ℎ(1−𝑠)𝑀 (𝑢) = 𝑣−1(𝑢), 

and 𝑣: (1 − 𝑠)𝜕𝑀 → 𝑇𝑛−1   

is the spherical image map (see [6] ,[26]), to 

show that the map 𝑢 ∈ 𝑇𝑛−1 → ∇ℎ𝑀 (𝑢) is a 

𝐶∞ diffeomorphism. Hence, the map 

 𝑢 ∈ 𝑇𝑛−1 → 𝑔𝑠(𝑢) ≔ (1 − 𝑠)∇ℎ𝑀 (𝑢) +

𝑠𝑢 

is also a 𝐶∞ diffeomorphism. To show that 

𝑠 → 𝜓−1𝜌𝑘(𝑠)(𝜆) is continuous, we pick any 

𝑠 ∈ [0,1] and take any sequence {𝑠𝑚}𝑚=1
∞  of 

points from [0,1] converging to 𝑠. The map 

 𝑢 ∈ 𝑇𝑛−1 → 𝑓𝑠(𝑢) ≔
𝑔𝑠(𝑢)

|𝑔𝑠(𝑢)|
  

is a 𝐶∞ diffeomorphism for any 𝑠 ∈ [0,1], 

and 𝑓𝑠𝑚
→ 𝑓𝑠 in  𝐶∞(𝑇𝑛−1). Hence, 𝑓𝑠𝑚

−1 →

𝑓𝑠
−1 in 𝐶∞(𝑇𝑛−1). 

 Now, 𝑔𝑠(𝑓𝑠
−1(𝜆)) ∈ 𝜕𝐾(𝑠) implies 

𝜌𝑘(𝑠)(𝜆) = |𝑔𝑠(𝑓𝑠
−1(𝜆))|, and 𝜌𝑘(𝑠𝑚) 

converges to 𝜌𝑘(𝑠) in 𝐶∞(𝑇𝑛−1). Since 𝜓 is 

a continuous bijection of 𝐶∞(𝑇𝑛−1) to itself, 

(see [6]), the lemma is proved. 

Lemma 3.4. Let 𝑛 ≥ 5. For any point 𝜆0 ∈

𝑇𝑛−1 there exists 𝐾̃ ∈ 𝐶+
∞ such that 

𝜓−1𝜌𝐾̃(𝜆) is strictly positive for all 

 𝜆 ≠ ±𝜆0 and 𝜓−1𝜌𝐾̃(±𝜆0 ) = 0. 

Proof. Fix 𝑛 ≥ 5. Then there exists 𝑀 ∈ 𝐶+
∞ 

such that 𝜓−1𝜌𝑀(𝜆) is sign-changing  

(see [15] Lemma 4.10 where an example of 

such body is constructed). For 𝑠 ∈ [0,1], 

consider the Minkowski sum 𝐾(𝑠) = 𝑠𝐵2
𝑛 +

(1 − 𝑠)𝑀. Then 𝜓−1𝜌𝐾(0)(𝜆) is sign-
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changing and there exists Λ′ ⊂ 𝑇𝑛−1 such 

that 

 𝜓−1𝜌𝐾(0)(𝜆) < 0, ∀𝜆 ∈ Λ′. On the other 

hand , 𝜓−1𝜌𝐾(1)(𝜆) > 0, ∀𝜆 ∈ 𝑇𝑛−1. By the 

previous lemma the map 𝑠 → 𝜓−1𝜌𝐾(𝑠)(𝜆) 

is continuous, and there is 

 𝑠0 ∈ [0,1] such that 

 𝜓−1𝜌𝐾(𝑠0)(𝜆) ≥ 0, ∀𝜆 ∈ 𝑇𝑛−1 and 

 𝜓−1𝜌𝐾(𝑠0)(𝜆) = 0, ∀𝜆 ∈ Λ ⊂ 𝑇𝑛−1,  

for some Λ ≠ ∅. Fix any 𝜆0 ∈ Λ. Consider 

an even 𝐶∞ smooth function 𝑔 on 𝑇𝑛−1 

such that 𝑔(𝑥) > 0, ∀𝑥 ≠ ±𝜆0 and 

𝑔(±𝜆0) = 0. For 𝜖 > 0 define a body 𝐾̃ 

(depending on 𝜆0): 𝜓−1𝜌𝐾̃ (𝜆) =

𝜓−1𝜌𝐾(𝑠0)(𝜆) + 𝜖𝑔(𝜆). 

Note that 𝜓−1𝜌𝐾̃ (𝜆) is strictly positive for 

all 

 𝜆 ≠ ±𝜆0 , and 𝜓−1𝜌𝐾̃ (±𝜆0) = 0. We get  

 𝜌𝐾̃ (𝑥) = 𝜌𝐾(𝑠0)(𝑥) + 𝜖𝜓𝑔(𝑥). 

Since 𝜓𝑔 is a 𝐶∞ function, and 𝐾(𝑠0) ∈ 𝐶+
∞, 

we may choose 𝜖 small enough so that 𝐾̃ ∈

𝐶+
∞. Using the rotation argument, we can 

take 𝜆0 to be arbitrary. 

Theorem 3.5. Let 𝑛 ≥ 5 be odd. There 

exists 𝜖 > 0 and a conver symmetric body 𝐾 

that is not an intersection body, but 

nevertheless ∀𝑥 ∈ 𝑇𝑛−1 there exists an 

intersection body 𝐿𝑥 such that 𝜌𝐾 = 𝜌𝐿𝑥
 on 

𝐸𝜖(𝑥). 

Proof. We define a convex body 𝐾 and a 

family of convex bodies {𝐿𝑥}𝑥∈𝑇𝑛−1 using 𝐾̃ 

and functions 𝑓𝑥,𝜆0
 from Lemma 3.1. We fix 

some small 𝜖 satisfying the requirements of 

Lemma 3.1 and we may assume 𝑐 = 2𝜓−11 

(see Remark 3.2). Then, define 𝐾 = 𝐾𝛿,𝜆0
 

via 𝜌𝐾 = 𝜌𝐾̃ − 𝛿, where for the moment 𝛿 >

0 is assumed to be so small that 𝐾 ∈ 𝐶+
∞ and 

𝜓−1𝜌𝐾  is strictly positive outside 𝑈𝜖(𝜆0 ). 

Note that 𝜓−1𝜌𝐾 (𝜆0 ) < 0 and thus 𝐾 is not 

an intersection body. 

Now we define a family of convex bodies 

{𝐿𝑥}𝑥∈𝑇𝑛−1 . Since 𝐾̃  ∈ 𝐶+
∞, we take 𝛿 so 

small that 

 𝜌𝐿𝑥  
≔ 𝜌𝐾̃  

– 𝛿 + 𝛿𝑓𝑥,𝜆0
> 0 on 𝑇𝑛−1  

and 𝐿𝑥 is convex. Observe that 

𝜌𝐿𝑥  
≔ 𝜌𝐾 

on 𝐸𝜖(𝑥) for any 𝑥 ∈ 𝑇𝑛−1. We 

can assume that 𝛿 is so small that 

𝜓−1𝜌𝐿𝑥  
= 𝜓−1𝜌𝐾̃ 

− 𝛿𝜓−11 + 𝛿𝜓−1𝑓𝑥,𝜆0
> 0  

on  
𝑇𝑛−1

𝑈𝜖(𝜆0 )
 , since 𝜓−1𝜌𝐾̃ 

> 0 on  
𝑇𝑛−1

𝑈𝜖(𝜆0 )
 .  
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To show that bodies 𝐿𝑥 are intersection 

bodies ∀𝑥 ∈ 𝑇𝑛−1, it is enough to prove that  

𝜓−1𝜌𝐿𝑥  
> 0 on 𝑈𝜖(𝜆0 ). By Remark 3.2, 

 min
𝑥∈𝑇𝑛−1

𝜓−1𝑓𝑥,𝜆0  
≥ 2𝜓−11  on 𝑈𝜖(𝜆0 ), 

hence  

𝜓−1𝜌𝐿𝑥  
= 𝜓−1𝜌𝐾̃ 

− 𝛿𝜓−11 + 𝛿𝜓−1𝑓𝑥,𝜆0

≥ 𝛿𝜓−11 > 0 

on 𝑈𝜖(𝜆0 ). Moreover, 𝛿 > 0 can be chosen 

independently of 𝑥 since the set of functions 

{𝑓𝑥,𝜆}
𝑥,𝜆∈𝑇𝑛−1 in Lemma 3.1 is finite. 

3. There is no local equatorial 

characterization of of zonoids in 

odd dimensions. 

The proofs in this section are very similar 

(in fact, almost identical) to the ones in the 

previous section. 

Lemma 4.1. Let 𝑛 ≥ 3 be odd. Then there 

exists an 𝜖 > 0 and an absolute constant 𝑐 >

0 such that for any 𝑥, 𝜆 ∈ 𝑇𝑛−1, there exists 

an even function 𝑓𝑥,𝜆 satisfying 𝑓𝑥,𝜆 = 0 on 

𝐸𝜖(𝑥), and 𝐶𝑜𝑠−1𝑓𝑥,𝜆 ≥ 𝑐 on 𝑈𝜖(𝜆 ). 

Proof. The proof follows the same lines as 

that of Lemma 3.1. One has to change the 

Spherical Radon transform to the Cosine 

transform, put support functions instead of 

radial functions and thus, use section 

functions of polar bodies together with (2), 

(4) and (8). 

Remark 4.2. Note that dilating 𝑀 and 𝑄 

(and thus functions 𝑓𝑥,𝜆) we may assume 

that 𝑐 is as large as we want. For technical 

reasons, we take 𝑐 = 2𝐶𝑜𝑠−11. Moreover, 

we can assume that the set of functions 

{𝑓𝑥,𝜆}
𝑥,𝜆∈𝑇𝑛−1 in the lemma is finite. 

Lemma 4.3. Let 𝑛 ≥ 3. For any point 𝜆0 ∈

𝑇𝑛−1 there exists a zonoid 𝐾̃  ∈ 𝐶+
∞ such 

that 𝐶𝑜𝑠−1ℎ𝐾̃(𝜆) is strictly positive for all 

 𝜆 ≠ ±𝜆0 and 𝐶𝑜𝑠−1ℎ𝐾̃ (±𝜆0 ) = 0. 

Proof. Fix 𝑛 ≥ 3. Then there exists 𝑀 ∈

𝐶+
∞ such that 𝐶𝑜𝑠−1ℎ𝑀 is sign-changing  

(see [15], the Fourier Analytic solution of 

Shephard problem for a construction of a 

𝐶+
∞ non-zonoid body). 

For 𝑠 ∈ [0,1] consider the Minkowski sum 

𝐾(𝑠) = 𝑠𝐵2
𝑛 + (1 − 𝑠)𝑀. Then ℎ𝐾(𝑠) =

th 𝐵2
𝑛 + (1 − 𝑠)ℎ𝑀 is a 𝐶∞ -function, 

𝐶𝑜𝑠−1ℎ𝐾(0)(𝜆) is sign-changing and there 

exists Λ′ ⊂ 𝑇𝑛−1 such that 𝐶𝑜𝑠−1ℎ𝐾(0)(𝜆) <

0, ∀𝜆 ∈ Λ′. On the other hand, 

𝐶𝑜𝑠−1ℎ𝐾(1)(𝜆) > 0, ∀𝜆 ∈ 𝑇𝑛−1.  The map 

𝑠 → 𝐶𝑜𝑠−1ℎ𝐾(𝑠) is continuous, since 𝐶𝑜𝑠 is 

a continuous bijection of  𝐶∞(𝑇𝑛−1) into 
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itself. (see [6]). Hence, there is 𝑠0 ∈ [0,1] 

such that  

𝐶𝑜𝑠−1ℎ𝐾(𝑠0) ≥ 0, and 𝐶𝑜𝑠−1ℎ𝐾(𝑠0)(𝜆) = 0, 

∀𝜆 ∈ 𝑇𝑛−1 and some Λ ≠ ∅. Fix any 𝜆0 ∈

Λ . Consider an even 𝐶∞ smooth function 𝑔 

on 𝑇𝑛−1 such that  

𝑔(𝑥) > 0, ∀𝑥 ≠ ±𝜆0 and 𝑔(±𝜆0) = 0 . For 

𝜖 > 0 define a body 𝐾̃: 

𝐶𝑜𝑠−1ℎ𝐾̃(𝜆) = 𝐶𝑜𝑠−1ℎ𝐾(𝑠0)(𝜆) + 𝜖𝑔(𝜆).  

Note that 𝐶𝑜𝑠−1ℎ𝐾̃(𝜆) is strictly positive for 

all 𝜆 ≠ ±𝜆0 , and 

𝐶𝑜𝑠−1ℎ𝐾̃(±𝜆0) = 0. Moreover, ℎ𝐾̃ =

ℎ𝐾(𝑠0) + 𝜖𝐶𝑜𝑠𝑔. 

Since 𝐶𝑜𝑠𝑔 is a continuous function and 

𝐾(𝑠0) ∈ 𝐶+
∞, we may choose 𝜖 small enough 

so that 𝐾̃ ∈ 𝐶+
∞. Using the rotation 

argument, we can take 𝜆0 to be arbitrary. 

Theorem 4.4. Let 𝑛 ≥ 3 be odd.There exists 

𝜖 > 0 and a convex body 𝐾 that is not a 

zonoid, but nevertheless ∀𝑥 ∈ 𝑇𝑛−1 there 

exists a zonoid 𝐿𝑥 such 

 ℎ𝐾 = ℎ𝐿𝑥
 on 𝐸𝜖(𝑥).  

Proof. We define a convex body 𝐾 and a 

family of convex bodies {𝐿𝑥}𝑥∈𝑇𝑛−1 using 

the zonoid 𝐾̃ and functions 𝑓𝑥,𝜆0
 from 

Lemma 4.1. We fix some small 𝜖 satisfying 

the requirements of Lemma 4.1 with 𝑐 =

2𝐶𝑜𝑠−11 (see Remark 4.2). Then, define 

𝐾 = 𝐾𝛿,𝜆0
 via ℎ𝐾 = ℎ𝐾̃ − 𝛿, where for the 

moment 𝛿 > 0 is assumed to be so small 

that 𝐾 ∈ 𝐶+
∞ and 𝐶𝑜𝑠−1ℎ𝐾 is strictly 

positive outside 𝑈𝜖(𝜆0 ) < 0 and thus 𝐾 is 

not a zonoid. Now we define a family of 

convex bodies {𝐿𝑥}𝑥∈𝑇𝑛−1 . Since 𝐾̃  ∈ 𝐶+
∞, 

we take 𝛿 so small that ℎ𝐿𝑥 ≔ ℎ𝐾̃ − 𝛿 +

𝛿𝑓𝑥,𝜆0
> 0 on 𝑇𝑛−1 and 𝐿𝑥 is convex. 

Observe that ℎ𝐿𝑥
= ℎ𝐾on 𝐸𝜖(𝑥) for any 𝑥 ∈

𝑇𝑛−1. We can assume that 𝛿 is so small that 

𝐶𝑜𝑠−1ℎ𝐿𝑥
= 𝐶𝑜𝑠−1ℎ𝐾̃ − 𝛿𝐶𝑜𝑠−11 +

𝛿𝐶𝑜𝑠−1𝑓𝑥,𝜆0
> 0 on 

𝑇𝑛−1

𝑈𝜖(𝜆0 )
 , since 

𝐶𝑜𝑠−1ℎ𝐾̃ > 0 on 
𝑇𝑛−1

𝑈𝜖(𝜆0 )
 . 

To show that bodies 𝐿𝑥 are zonoids ∀𝑥 ∈

𝑇𝑛−1, it is enough to prove that 𝐶𝑜𝑠−1ℎ𝐿𝑥
>

0 on 𝑈𝜖(𝜆0 ). By Remark 4.2, 

min
𝑥∈𝑇𝑛−1

𝐶𝑜𝑠−1𝑓𝑥,𝜆0
> 2𝐶𝑜𝑠−11 on 𝑈𝜖(𝜆0 ), 

hence 𝐶𝑜𝑠−1ℎ𝐿𝑥
= 𝐶𝑜𝑠−1ℎ𝐾̃ − 𝛿𝐶𝑜𝑠−11 +

𝛿𝐶𝑜𝑠−1𝑓𝑥,𝜆0
≥ 𝛿𝐶𝑜𝑠−11 > 0 

on 𝑈𝜖(𝜆0 ), and the result follows. 

4. There is  a local equatorial 

characterization of intersection 

bodies and zonoids in even 

dimensions. 
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We consider at first intersection bodies. The 

proof of the following lemma is obtained by 

a straightforward repetition of the argument 

from (see [15]), and we omit the details. 

Lemma 5.1. Let 𝑔(𝑥) be an even 

homogeneous function of degree-1 such that 

𝑔(𝑥) is nonnegative and infinitely smooth 

on 𝑇𝑛−1. Then 

𝑔̃(𝜆) = (−1)
𝑛−2

2 𝜋𝐴𝑔,𝜆
𝑛−2(0), 

where  

𝐴𝑔,𝜆(𝑧) = ∫ 𝜒[0,1]
{𝑦∈ℝ𝑛:𝑦.𝜆=𝑧}

(
1

𝑔(𝑦)
) 𝑑𝑦, 𝜆 ∈ 𝑇𝑛−1. 

Theorem 5.2. Let 𝑛 be even and let 𝐾 ⊂ ℝ𝑛 

be an origin symmetric convex body. 

Assume that for any great sphere  𝜆⊥ ∩

𝑇𝑛−1, there exists an intersection body 𝐿𝜆 

and a neighborhood 𝐸𝜖(𝜆)(𝜆) of 𝜆⊥ ∩ 𝑇𝑛−1 

such that the radial functions of 𝐾 and 𝐿𝜆 

coincide at all points of 𝐸𝜖(𝜆)(𝜆); then 𝐾 is 

an intersection body 

Proof. If 𝐾 and 𝐿𝜆 are infinitely smooth, 

then it is enough to observe that  

𝜌𝐾(𝑢) = 𝜌𝐿𝜆
(𝑢) ∀𝑢 ∈ 𝐸𝜖(𝜆)(𝜆)  

implies 𝐴𝐾,𝜆(𝑠) = 𝐴𝐿𝜆,𝜆(𝑠) for sufficiently 

small 𝑠 and apply (5). 

Consider the general case case. It was 

proved by A. Koldobsky that an original-

symmetric convex body 𝐾 is an intersection 

body if and only if 𝜌𝐾 represents a positive 

definite distribution (see for example, 

Theorem 4.1 in [15]). Thus, it is enough to 

show that 〈𝜌𝐾 ,̂ 𝜂〉 ≥ 0, for all nonnegative 

test functions 𝜂 on ℝ𝑛. 

Using the definition of the Fourier 

Transform of distributions (see section 2.5, 

in [15] ) and passing to the polar 

coordinates, we get 

〈𝜌𝐾,̂ 𝜂〉 = 〈𝜌𝐾, 𝜂̂〉 = ∫ 𝜌𝐾(𝑥)
ℝ𝑛

𝜂̂(𝑥)𝑑𝑥

= ∫ 𝜌𝐾(𝜃)
𝑇𝑛−1

∫ 𝑟𝑛−2𝜂̂(𝑟𝜃)𝑑𝑟𝑑𝜃.
∞

0

 

Observe that the function 

 𝛼(𝑥) ≔ ∫ 𝑟𝑛−2𝜂̂(𝑟𝑥)𝑑𝑟, 𝑥 ∈
𝑅𝑛−1

{0}

∞

0
  

is homogeneous of degree-𝑛 + 1 and 

infinitely smooth. Hence, we may apply 

equality 4.3, page 72 together with Lemma 

3.7, page 53 from ([15]) to claim that there 

exists an infinitely smooth non-negative 

homogeneous of degree −1 function 

𝑔(𝑥) =
1

2
∫ 𝜂(𝑠𝑥)

ℝ
𝑑𝑠, such that 𝑔̂(𝜃) =

𝛼(𝜃) ∀𝜃 ∈ 𝑇𝑛−1. 
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Thus, 

∫ 𝜌𝐾(𝜃)
𝑇𝑛−1 ∫ 𝑟𝑛−2𝜂̂(𝑟𝜃)𝑑𝑟𝑑𝜃 =

∞

0
∫ 𝜌𝐾(𝜃)

𝑇𝑛−1 𝜂̂(𝜃)𝑑𝜃. 

Using a partition of unity on 𝑇𝑛−1 together 

with homogeneity of 𝑔, we can write 

𝑔(𝜃) = ∑ 𝑔𝑗(𝜃)

𝑚

𝑗=1

= ∑
1

2
∫ 𝜂𝑗

ℝ

(𝑠𝜃)

𝑚

𝑗=1

𝑑𝑠, 𝜃 ∈ 𝑇𝑛−1, 

where supp 𝑔𝑗|𝑇𝑛−1 ⊂ 𝑈𝜖𝑗
(𝜆𝑗) are small 

enough. 

By the previous lemma, supp 𝑔𝑗|𝑇𝑛−1 ⊂

𝑈𝜖𝑗
(𝜆𝑗) implies supp 𝑔̂𝑗|𝑇𝑛−1 ⊂ 𝑈𝜖𝑗

(𝜆𝑗). 

Hence,  

〈𝜌𝐾 ,̂ 𝜂〉 = ∑ ∫ 𝜌𝐾(𝜃)
𝑇𝑛−1

𝑔̂𝑗(𝜃)𝑑𝜃

𝑚

𝑗=1

= ∑ ∫ 𝜌𝐾(𝜃)
𝐸𝜖𝑗

(𝜆𝑗)

𝑔̂𝑗(𝜃)𝑑𝜃

𝑚

𝑗=1

= ∑ ∫ 𝜌𝐿𝜖𝑗
(𝜃)

𝐸𝜖𝑗
(𝜆𝑗)

𝑔̂𝑗(𝜃)𝑑𝜃

𝑚

𝑗=1

= ∑ ∫ 𝜌𝐿𝜖𝑗
(𝜃)

𝑇𝑛−1

𝑔̂𝑗(𝜃)𝑑𝜃

𝑚

𝑗=1

= ∑ 〈𝜌𝐿𝜖𝑗̂
, 𝜂𝑗〉

𝑚

𝑗=1
≥ 0. 

The following result was obtained 

independently by [23] and[11]. Its proof 

could be also obtained by the arguments 

similar to those in the previous proof, and 

we omit it. 

Theorem 5.3. Let 𝑛 be even and let 𝐾 ⊂ ℝ𝑛 

be an origin symmetric convex body. 

Assume that for any great sphere 𝜆⊥ ∩ 𝑇𝑛−1, 

there exists a zonoid 𝑍𝜆 and a neighborhood 

𝐸𝜖(𝜆)(𝜆) of 𝜆⊥ ∩ 𝑇𝑛−1 such that the 

boundaries of 𝐾 and 𝑍𝜆 coincide at all points 

where the exterior unit vector belong to 

𝐸𝜖(𝜆)(𝜆); then 𝐾 is a zonoid. 

5. There is no local equatorial 

characterization of intersection 

bodies . 

In this section we prove the analog of the 

result of [28] for zonoids. Our proof is 

different from the one of W. Weil. We show 

that, given 𝑥, 𝜆 ∈ 𝑇𝑛−1, one can construct a 

function 𝑓 which is zero around 𝑥, but such 

that the inverse spherical Radon transform 

of 𝑓 is positive around 𝜆. For convenience of 

the reader we split the proof of this auxiliary 

result (see Lemma 6.4) into four statements. 

We will use the following notation 

Ω𝜖,𝑥 = {𝑓 ∈ 𝐶∞(𝑇𝑛−1): 𝑓

= 0 on 𝑈𝜖(𝑥)},     0 < 𝜖 < 1. 

Lemma 6.1. Let 𝑛 ≥ 3, and let 𝜆, 𝑥 ∈ 𝑇𝑛−1 

be two orthogonal vectors. Assume that any 

𝑓 ∈ Ω1

4
,𝑥

 satisfies 𝜓−1(𝜆) = 0. Then for any 

pair of orthogonal vectors 
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𝑢, 𝑣 ∈ 𝑇𝑛−1 we have 𝑓 ∈ Ω1

4
,𝑢

 implies 

𝜓−1𝑓(𝑣) = 0. 

Proof. For any two pairs of orthogonal unit 

vectors (𝜆, 𝑥), (𝑢, 𝑣) there exists a rotation 

𝜌 ∈ 𝑇𝑂(𝑛) satisfying 𝑢 = 𝜌(𝑥), 𝑣 = 𝜌(𝜆). 

Since 𝜓−1 commutes with rotation, the 

result follows. 

Lemma 6.2. Let 𝑛 ≥ 3, and let 𝜆 ∈ 𝑥⊥. 

Assume that any 𝑓 ∈ Ω1

4
,𝑥

 satisfies 

𝜓−1𝑓(𝜆) = 0. Then 𝜓−1 (Ω1

2
,𝑥

 ) ⊂ Ω1

4
,𝜆

  

Proof. Take any 𝑢 ∈ 𝑈1

4

(𝜆).  

Let 𝜌 ∈ 𝑇𝑂(𝑛), 𝜌(𝜆) = 𝑢,  

where 𝜆  is rotated into 𝑢 inside 𝑈1

4

(𝜆) in the 

plane containing 𝜆, 𝑢  and the origin. Then 

𝜌(𝑥) ∈ 𝑈1

4

(𝑥), and  

Ω1

2
,𝑥

⊂ Ω1

4
,𝜌(𝑥)

. Moreover, 𝜓−1𝑓(𝑢) = 0 

since 𝜓−1 commutes with rotations. The 

point 𝑢 was chosen arbitrarily in 𝑈1

4

(𝜆), 

hence 𝜓−1 (Ω1

2
,𝑥

) ⊂ Ω1

4
,𝜆

 . 

Lemma 6.3. Let 𝑛 ≥ 3, and let 𝜆 ∈ 𝑥⊥. 

Then there exists a function 𝑓 = 𝑓𝑥,𝜆 on 

𝑇𝑛−1 satisfying 𝑓𝑥,𝜆 = 0 on 𝑈1

4

(𝑥), but 

𝜓−1𝑓𝑥,𝜆(𝜆) ≠ 0. 

Proof. Assume the contrary. Then 

𝜓−1 (Ω1

2
,𝑥

) ⊂ Ω1

4
,𝜆

 by Lemma 6.2. Take any 

vector 𝑦 ∈ 𝑇𝑛−1, and find a vector 𝑞 ∈ 𝑥⊥ ∩

𝑦⊥. Let 𝜌 ∈ 𝑇𝑂(𝑛) by such that 𝜌(𝑥) =

𝑥, 𝜌(𝜆) = 𝑞. Observe that 𝑓 ∈ Ω𝜖,𝑥 implies 

𝑓(𝜌(. )) ∈ Ω𝜖,𝑥. Since 𝜓−1 commutes with 

rotations, 𝜓−1 (Ω1

2
,𝑥

) ⊂ Ω1

4
,𝜆

 yields 

𝜓−1 (Ω1

2
,𝑥

) ⊂ Ω1

4
,𝑞

. Take two pairs of 

orthogonal vectors (𝑥, 𝑞) and (𝑞, 𝑦). By 

Lemma 6.1, we have 

  𝜓−2𝑓(𝑦) = 0. Thus   𝜓−2𝑓 ≡ 0, a 

contradiction. 

Lemma 6.4. Let 𝑛 ≥ 3. Then there exists an 

𝜖 > 0 and an absolute constant 𝑐 > 0 such 

that for any 𝑥, 𝜆 ∈ 𝑇𝑛−1, there exists an even 

functional 𝑓𝑥,𝜆 satisfying 𝑓𝑥,𝜆 = 0 on 𝑈𝜖(𝑥), 

and 𝜓−1𝑓𝑥,𝜆 ≥ 𝑐 on 𝑈𝜖(𝜆). 

Proof. We fix points 𝑥 and 𝜆, and provide 

an 𝜖 > 0 and 𝑐 > 0 depending on 𝑥, 𝜆 such 

that there is a function 𝑓𝑥,𝜆 satisfying 𝑓𝑥,𝜆 =

0 on 𝑈𝜖(𝑥), and 𝜓−1𝑓𝑥,𝜆 ≥ 𝑐 > 0 on 𝑈𝜖(𝜆). 

Then we use the compactness argument to 

prove the statement of the lemma. Let 𝜆 ∉

𝑥⊥. Then there exists an 𝜖 > 0, such that 𝜆 ∉

𝐸𝜖(𝑥). For any function 𝑔 the values of 𝜓𝑔 

on 𝑈𝜖(𝑥) depend only on the values of 𝑔 on 

𝐸𝜖(𝑥). Hence, we may consider an even 
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𝐶∞ −function 𝑔 such that 𝑔(±𝜆) > 0 and 

𝑔(𝑣) = 0, for 𝑣 ∈ 𝐸𝜖(𝑥) and  define 𝑓𝑥,𝜆 =

𝜓𝑔(𝑥). 

Let 𝜆 ∈ 𝑥⊥. Then, the previous lemma 

implies the existence of = 𝜖(𝑥, 𝜆) =
1

8
 , 

and a function 𝑓 = 𝑓𝑥,𝜆 on 𝑇𝑛−1 satisfying 

𝑓𝑥,𝜆 = 0 on 𝑈𝜖(𝑥), but 𝜓−1𝑓𝑥,𝜆(𝜆) > 0 

(change the sign of 𝑓𝑥,𝜆 if necessary). 

Thus, we proved that for any 𝑥 and 𝜆, there 

is 𝜖′ = 𝜖′(𝑥, 𝜆) > 0  

and there is a function 𝑓𝑥,𝜆 such that 𝑓𝑥,𝜆 = 0 

on 𝑈𝜖′(𝑥), but 

 𝜓−1𝑓𝑥,𝜆(±𝜆) ≥ 𝑐′, 𝑐′ = 𝑐′(𝑥, 𝜆) > 0.  

From the continuity of the function 𝜓−1𝑓𝑥,𝜆 

we get that 

  𝜓−1𝑓𝑥,𝜆 ≥ 𝑐, 𝑐 = 𝑐(𝑥, 𝜆) > 0  

on 𝑈𝜖′′(𝜆), for some 𝜖′′ > 0.  

Take 𝜖̃ = 𝜖̃(𝑥, 𝜆) = min(𝜖′, 𝜖′′).  

We show that for any 𝑥 and 𝜆, there is 

 𝜖̃ = 𝜖̃(𝑥, 𝜆) > 0 and there is a function 𝑓𝑥,𝜆 

such that 𝑓𝑥,𝜆 = 0 on 𝑈𝜖̃(𝑥), but 𝜓−1𝑓𝑥,𝜆 ≥

𝑐  on 𝑈𝜖̃(𝜆), 𝑐 = 𝑐(𝑥, 𝜆) > 0.  

Now we use the compactness argument to 

prove that we can choose an 𝜖 and 𝑐 

independent of 𝑥 and 𝜆. We choose a finite 

set of {𝑥𝑖 , 𝜆𝑖}𝑖=1
𝑚  such that 

 {𝑈𝜖̃𝑖
2

(𝑥𝑖) × 𝑈𝜖̃𝑖
2

(𝜆𝑖)}
𝑖=1

𝑚

 covers 𝑇𝑛−1 ×

𝑇𝑛−1. We take  

𝜖 =
1

2
min

1≤𝑖≤𝑚
𝜖𝑖̃ and 𝑐 = min

1≤𝑖≤𝑚
𝑐(𝑥𝑖, 𝜆𝑖). 

Then for any (𝑥, 𝜆) there is a (𝑥𝑖, 𝜆𝑖) such 

that 

𝑈𝜖(𝑥) × 𝑈𝜖(𝜆) ⊂ 𝑈𝜖̃𝑖
(𝑥𝑖) × 𝑈𝜖̃𝑖

(𝜆𝑖) 

and we may define 𝑓𝑥,𝜆 = 𝑓𝑥𝑖,𝜆𝑖
 . 

Theorem 6.5. Let 𝑛 ≥ 5. There exists a 

conver body 𝐾 that is not an intersection 

body, such that  ∀∈ 𝑥𝑇𝑛−1 there exists an 

𝜖(𝑥) and an intersection body 𝐿𝑥 such that 

𝜌𝐾 = 𝜌𝐿𝑥
 on 𝑈𝜖(𝑥)(𝑥). 

Proof. Repeat the Proof of Theorem 1(see 

[22]). 

Conclusion 

Finally we have show that there is no local 

equatorial characterization of zonoids in odd 

dimensions. This gives a negative answer to 

the conjecture posed by W.Weil in 1977 and 

shows that the local equatorial 

characterization of zonoids may be given 
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only in even dimensions. In addition we 

prove a similar result for intersection bodies 

and show that there is no local 

characterization of these bodies. 
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