

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

85 Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

AN EVALUATION OF CONSISTENCY MODELS

IN NOSQL DATABASES

Mohamed Siddig Hassan1 and Mohamed Bakri Bashir 2

1 Facutly of Computer Sciences. Shendi University, Shendi, Sudan

msh@ush.edu.sd

2 Faculty of Computer Science, AlTaif University, Saudi Arabia

mhmdbakri@ush.edu.sd

ABSTRACT

This study focuses on the various consistency models are used in NoSQL databases. NoSQL databases are

designed to handle large volumes of unstructured or semi-structured data, and they often use distributed

architectures to achieve high scalability and availability. However, maintaining consistency across this type of

database can be challenging due to the distributed nature of the database and the concurrent access of multiple

users or applications. This study explores the different types of consistency models used in NoSQL databases.

The study examines the strengths and weaknesses of each model and how they ensure data consistency and

integrity in distributed databases. The findings of this study can help database administrators and developers

choose the appropriate consistency model for their NoSQL database based on their specific requirements and

use cases.

KEYWORDS: NoSQL, NoSQL-Database, DBMS, Consistency , eventual consistency

1. INTRODUCTION

 1.1 BACKGROUND

In this days, the data was growing rapidly with time, for example, the amount of data volumes

was generated by Twitter and Facebook users in each day was estimated by 12 and 500 TB [1]

[2]. The Relation Databases can't handle this amount of data [3]. Therefore, an enterprise

companies tend to find new types of databases that meet the requirements for handling and

processing this massive of data that generated every day. NoSQL (Not-Only-SQL) is a new

database to handle the massive data by supporting cluster architecture has recently become very

popular. Google and Amazon are considered pioneers in producing these types of databases and

their products are today considered one of the most distinguished products based on the concept

of NoSQL.

This type of database is based on distributed database system models, and CAP Theorem

Presented by Eric Brewer for management database systems DBMs. Consistency, Availability

and partition tolerance submitted by Eric Brewer since 2000. Consistency refers to the fact that,

at any one time, all copies of the data in the system seem identical to an outsider. Availability

describes how the system as a whole keeps running even when a node fails. It is necessary for

mailto:msh@ush.edu.sd
mailto:mhmdbakri@ush.edu.sd

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

86 Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

partition-tolerance that the system function even in the face of random message loss. Similar to

network flaws [4].

In related database management systems, ACID is preferred to. Atomicity: The state in which all

of the transaction's operations will either succeed or fail. Consistency: The absence of inconsistent

data in any transaction or its effects. A transaction will act as though it is the sole action taking

place when it is isolated. Durability: The inability for an operation to be undone after it has been

carried out [4]. Most of References are divided the NoSQL databases models into: (1) Key-value

NoSQL model, (2) Column-Family NoSQL model, (3) Document NoSQL model, and (4) Graph

NoSQL model.

NoSQL DBMSs also demand eventual consistency, which implies that initially, not all redundant

nodes will have the most up-to-date data, but eventually, all servers will have the same data, in

order to increase performance. NoSQL DBMSs support multi-level consistency when various

applications have varying needs for consistency. N must always be greater than or equal to C,

where C denotes the consistency level that must be met for a read/write operation and N is the

number of replicated nodes. [5].

There were seven sections in this article. Introduction is found in section one. The related work

is presented in section 2, and the consistency in NoSQL DBMS is covered in section 3. The

approach is introduced in section 4, and the findings and discussions are presented in part 5. There

were 5 sections in this essay. Introduction is found in section one. The related work is presented

in section 2, and the consistency in NoSQL DBMS is covered in section 3. The approach is

introduced in section 4, and the findings and discussions are presented in part 5 and 6.

1.2 MOTIVATION

NoSQL Database are weak support for the ACID transactional guarantees and strong data

consistency features, because this challenge the developers have solve this problem within code

of the applications and may cause the difficulties in the application development life cycle and

also reduce the efficiency of the production development.

1.3 CONTRIBUTION

In this study we present the consistency models in NoSQL databases. The researcher contributions

are stated, (1) To present a consistency models in NoSQL Specially in Key-value data model. (2)

Proposed a best model of consistency in may applied in NoSQL data store. (3) Fill the gap of the

study in the consistency models

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

87 Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

2. RELATED WORKS:

Various representative studies have frequently evaluated eventual consistency in NoSQL

databases, frequently taking the performance impact into account. To assess how read and write

operations, database replication, and eventual consistency of NoSQL DBMSs are impacted, the

authors of [2] recommend adopting a probabilistic technique. recommend adopting a probabilistic

technique. Although the authors give model validation with a small relative error, performance

and availability issues are not taken into account in the works. Mathematical models to specify

and assess ultimate consistency on data storage systems have been provided by the study of Attiya

et al. [6] Performance, however, is not taken into account. Using DynamoDB to explore the impact

of operation delay, such as write operation, on eventual consistency was done in the work by

Bailis et al. [7]. Assessing the implications of operation delay, such as a write operation, on

eventual consistency using DynamoDB. They also provide a method for calculating consistency

that accounts for the number of database replicas. In evaluating the performance of three NoSQL

DBMSs (MongoDB, Cassandra, and Riak), Klein et al. took into account the number of clients.

Results from experiments suggest that strong consistency may result in a 25% decrease in system

performance. [8]. According to Huang et al., queue length should be used as a metric for

consistency. DBMS Cassandra has been utilized in tests. [9]. In [10] The researchers conducted

several studies to find out how database consistency impacts energy usage. Results indicate that

energy use is highly influenced by effort. Liu et al. attempted to determine how long it would take

to update data in databases with eventual consistency. In the study [11] the researchers offer a

probabilistic approach. Osman et al.'s offer a Petri Net Model for evaluating the Cassandra

DBMS's performance while taking into consideration different redundancy strategies and cluster

sizes. The model delivers values that are close to those of the actual system, according to the

results, but they do not address system availability. [12].

3. NoSQL Consistency

An operation sequence that usually complies with the ACID properties is referred to as a

transaction. If a transaction is successful, it is said to commit; if not, it is called to abort [13].

A single valid state for all database instances can be characterized as consistency in database

management systems DBMS. A database management system consistency can be defined as a

single acceptable state for all database instances as long as the data remain the same across all

redundant database servers. [14, 15]. Because a DBMS must guarantee that the returned data is

the most recent for readings and must confirm that the write operation has been successfully

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

88 Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

performed on each requested server, this has an influence on performance. Since there are more

database replicas present in distributed systems, availability is also impacted by consistency

policy in a manner similar to how accessibility is. In order to boost efficiency and availability,

NoSQL databases use eventual consistency, which permits temporary inconsistency (i.e., not all

redundant servers will immediately have the most recent data) and permits a database replica to

return its available data (which may not be the newest). There will finally be consistency across

all redundant servers [16]. NoSQL DBMSs permit the adoption of different consistency levels

(i.e., the bare minimum of redundant servers holding the most recent data), which are adjusted in

accordance with an application's needs [17]. This contributes to closing the inconsistency. Fewer

servers need to be upgraded because of fault tolerance and increased availability. Another NoSQL

trait is strong consistency, which always returns the most recent data.

According to the most recent studies, consistency models can be categorized into a variety of

categories, including strong consistency, weak consistency, eventual consistency, causal

consistency, read-your-writes consistency, session consistency, monotonic reads consistency, and

monotonic writes consistency.

1) Weak-Consistency Model:

This model, as the name indicates, reduces consistency. It specifies that a read operation

does not guarantee the return of the most recently stored value. It also does not ensure the

sequence of events [18]. The time interval between a write operation and the point at

which each read operation provides the updated data is referred to as the inconsistency

window [19]. Because there is no need to include more than one replica or node in a client

request, this paradigm results in a highly scalable system.

2) Eventual Consistency Model:

A consistency model that ensures if there is no additional updates on a given item, all the

reads to that item will eventually return the same value [19]. Replicas frequently arrive

with the same data state. Read operations might not always return the most recent version

while this procedure is in progress. The connection lags between replicas and their

sources, system load, and the number of replicates involved will affect the inconsistency

interval. [18]. This method is half-way between a strong-consistency model and a weak-

consistency model. Many NoSQL databases provide Eventual Consistency as a feature.

The world's most popular companies that use Cassandra can provide availability and

network partitioning to such a degree that it does not hinder functionality. Facebook, the

company that originally developed Cassandra, is one of them.

3) Strong Consistency Model:

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

89 Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

 The identical value will be returned by any read from any replica thanks to a robust

consistency model. All clients will utilize the identical data entry and data, and each

transaction must appear to be committed instantly. The write action must commit before

a read operation may access the updated version of an instance. Every storage system

instance accepts a particular global sequence of events. [19] , [20].

4) Casual Consistency Model:

 Any operations that recognize the update on an element are required to take the modified

value into account. The eventual consistency model will be used in the event that another

process does not acknowledge the write operation [18]. Although less dependable than

sequential consistency, causal consistency is more dependable than eventual consistency.

When the Eventual Consistency model is reinforced to be Causal Consistency, the

system's availability and network partitioning properties are decreased. [18].

5) Read-Your-Writes Consistency Model:

With the help of the read-your-writes consistency model, it is made sure that a replica is

at least current enough to include changes made by a single transaction. Transactions are

applied sequentially, therefore by guaranteeing that a replica has a particular commit

applied to it, we can make sure that all transaction commits that took place prior to the

given transaction have already been committed to the replica. If a process updates an

object, that process will always take into account the modified value. Other processes

will eventually read the modified value. Therefore, read-your-writes consistency is

achieved when the system guarantees that every attempt to read a record that has been

modified will return the updated value.

6) Session Consistency Model:

A process will follow a read-your-writes consistency model for the length of a session if

it makes a request to the storage system while it is operating within that session. All reads

are current with the session's writes using session consistency, although writes from other

sessions may need to wait. Although everything arrives in the correct order from prior

sessions, the data is not always guaranteed to be up to date. This offers excellent

consistency at half the cost of good performance and availability.

7) Monotonic Read Consistency Model:

Every time a process reads a value, it returns that value or one that is more recent [15]. It

implies that the same item is read by the same process consistently and in the same order.

However, this does not guarantee that read operations between processes on the same

object will be ordered monotonically. Because of this, monotonic readings ensure that a

process that reads r1, r2, and r2 cannot experience a state that is earlier than the writing

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

90 Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

represented in r1; reads, by nature, cannot travel backward. Monotonic readings do not

apply to operations carried out by different processes; they only apply to those carried

out by the same process. There are full monotonic readings available: Even during a

network split, all nodes can advance [21].

8) Monotonic Write Consistency Model:

Before any more write operations by the same process on the same object, a process-

initiated write action on that particular object must be completed [19]. In other words, the

same process writes to the same object consistently in the same order. However, this does

not guarantee that write operations between processes on the same object will be ordered

monotonically. The effect of this is that monotonic writes guarantee that if a process

writes w1, then w2, then all processes will observe w1 before w2. Monotonic writes do

not apply to operations carried out by different processes; they only apply to those carried

out by the same process. All monotonic writes are available: Even during a network split,

all nodes can advance [22].

9) Time-Line Consistency Model:

Yahoo created this consistency model especially for YAHOO PNUTS in order to

solve the inefficiencies of serializable transactions of the big data and its relation with

their geo-replication. Furthermore, it seeks to reduce the shortcomings of eventual

consistency [23]. NoSQL databases are support eventual consistency instead of strong

consistency. They do not support database transactions which ensure strong data

consistency [24].

Each type of NoSQL models support many level of Consistency for example the eventual

consistency supported may levels of consistency For the confirmation of an activity at consistency

level ONE, just one node or server is required (such as a write or read). For level 2 operations,

TWO nodes are needed, and while reading, the most current data from both servers is taken into

consideration. The QUORUM policy [25], which requires that the least integer bigger than 50%

of the database nodes be used to determine consistency, is compatible with a level like this. Like

the ALL policy, Level Three asks confirmation from each node. [26]. The latest information is

constantly accessible thanks to reading (high consistency) [27].

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

91
Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

Table (1): NoSQL Consistency Models

Consistency Model Grantees

Weak Consistency

Model

A read operation will not really support serialization and doesn't guarantee that it will

provide the value that was most recently saved in memory.

Session Consistency

Model

Consistency with read-your-writes is only guaranteed during a session.

Read-Your-Writes

Consistency Model

An operation always receives the most recent update on read operations.

Monotonic Reads

Model

Every time return the same value as the last reading, or one that is more recent.

Monotonic Writes

Consistency Model

Prior to performing any more writes, a write operation must always complete.

Casual Consistency Order of actions overall with a causal connection

Strong Consistency Serializability A set of operations is composed of concurrent computations

of a group of serialization units.

Linearizability Every operation is immediately seen in the overall,

sequential order of events, or it is handled as a single

operation.

Eventual Consistency Eventually, the state of the updates will be consistent across all replica nodes.

Time-line Consistency The actions are performed on the same record by all replica nodes in the same

"correct proportion".

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

92
Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

Table (2) Consistency Model in NoSQL Databases

NoSQL

Database
Data Model

Consistency

Model
Applications/Services API

Amazon

Dynamo
Key-Value

Eventual

Consistency

E-Commerce Platforms like

Amazon Stores (AWS Amazon

Web Services)

Multiple

Consistency Level

Cassandra Column-Family
Eventual

Consistency

Facebook, Netfelx, inbox search,

eBay, Sound Cloud, Rack Space

Cloud

Multiple

Consistency Level

(ONE, TWO,

ALL, QURAM)

Raven DB Document
Eventual

Consistency
Toyota

Multiple

Consistency Level

MongoDB Document
Eventual

Consistency

SAP AG Software Entreprise,

MTV, Vodafone, AMAR BANK
CRUD API

Raik Key-Value
Eventual

Consistency
Yammer Social Network, Github

Multiple

Consistency Level

Yahoo PNUTS! Multi-Model
Timeline

Consistency
Yahoo Mail

Multiple

Consistency Level

Apache HBase Column Family Strong Consistency

Facebook messenger, using

Hadoop for large set of

application

JSON API

Microsoft

Azure
BOLB Tables Strong Consistency Office 365, OUTLOOK, Bing RESTfull API

Redis Key-Value Strong Consistency Flicker, Instagram JSON API

Google Spanner MultiModel Strong Consistency Google F1 SQL-Like

Many applications demand either a rigorously strong type of consistency or just static eventual

consistency. However, consistency requirements are not evident for another type of applications since

they are dependent on data access behavior dynamical, client demands, and the results of reading

inconsistent data such as ecommerce platforms because these kinds of applications, the fast

accessibility and availability are critical. Strong consistency techniques may therefore be unaffordable.

Although they are preferred for some applications, great levels of uniformity are not always required.

In situations like these, undesirable results are caused by either immobile eventual or strong sorts of

consistency. When storage systems are dispersed geographically, strong consistency guarantees

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

93
Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

become unaffordable due to high network latencies. As a result, applications requiring high availability

and performance are best served by weaker consistency semantics, such as eventual consistency.

4. Methodology

The one of the contribution is to select the best type of the consistency if we setup the eventual

consistency. And determine how the cost of replicated NoSQL data storage varies depending

on the consistency level being used. As a result, we add to our earlier research by figuring out

how much it will cost to use ScyllaDB.

4.1 ScyllaDB

ScyllaDB is a distributed NoSQL wide-column database for data-intensive applications that

require high performance and low latency, its sharded cluster, replica set or standalone, It is

an open source NoSQL database and support cloud [28].

The number of replicas (in a cluster) that must acknowledge a read or write operation before

the coordinator node may judge the operation was successful is determined by a Consistency

Level (CL). That means the CL maybe is the important factor for the NoSQL database that

used the eventual consistency.

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

94
Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

Table (3) describe Scylla Consistency levels [28]

Consistency Level With Replicas Must Response Consistency Availability

ANY (Write Only) The closest replica, according

to the snitch. After an indicated

handoff, write succeeds if all

replica nodes are down.

Assures never-failing writes

while offering low latency.

Lowest (Write) Highest (Write)

ONE The Snitch's assessment of the

closest replica. The

requirements for consistency

are not overly strict.

Lowest (READ) Highest (READ)

TWO The closest two replicas as

determined by the Snitch.

THREE The closest three replicas as

determined by the Snitch

QUORUM A simple majority of all

replicas across all datacenters.

This CL allows for some level

of failure

ALL All replicas in cluster Highest Lowest

LOCAL_QUORUM Confined to the same datacenter

as the coordinator.

Low in multi-data

centers

EACH_QUORUM

(WRITE ONLY)

A simple majority in each

datacenter.

Same across datacenter

LOCAL_ONE
Same as ONE, but confined to

the local datacenter.

SERIAL Returns results with the most

recent data. Including

uncommitted in-flight LWTs.

Writes are not supported, but

read transactions are supported.

Linearizable

LOCAL_SERIAL Same as SERIAL, but confined

to a local datacenter. Writes are

Linearizable for the local

DC

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

95
Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

Consistency Level With Replicas Must Response Consistency Availability

not supported, but read

transactions are supported.

4.2 Experimental Setup

We deploy a single replica set in Amazon Elastic Compute Cloud (AWS) to conduct the tests (EC2).

With 30 nodes on the USA (us-east-1) site and 5 nodes in the same geographical region and different

availability zones, we deployed ScyllaDB on two data zones. Each node has the following

specifications:

- 250 GB NVMe SSD,

- 32 GB of Memory,

- 8-cores INTEL CORE.

- Standard architecture of 1000 Gbit/s dark fibers

- OS: Linux Ubuntu 18.4

With ScyllaDB, we used a replication factor of three copies, with two of them allocated to Zones 1 and

5.

4.3 Workloads

For testing the eventual consistency and casual consistency we had initialize a workload which

would perform multiple sequential operation for a single session rather than independent point

quires, we used a workloads based on social media of twitter. Which involve each client doing

mix of read and writes (read tweets, and write tweets) or just a serializable of read (insights,

status checks) in the session. A performance will done with enabling the transactions, and

verifying the setting for the consistency, read performance, write performance, as well as the

number of threads.

4.4 Benchmarks

 We need a benchmark tool that makes use of the features of various workloads in order to run the

experiment and assess the consistency levels; in this example, we use the Yahoo Cloud Service

Benchmark (YCSB) 1.12.0. YCSB can be utilized with a variety of programs, including Additionally,

YCSB displays genuine cloud features like scale-out, elasticity, and high availability, and we use it to

execute Workload A, a workload with a high read-to-update ratio (60:40). After replication, our

workload in both environments consists of 10 million operations on 5 million rows for a total of 50.84

GB of data.

5. Results and Discussion

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

96
Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

Many applications that demand low latency writes can't wait for the response of replication of each

write and use write all for doing writes for all nodes that’s mean some of writes may be not written and

rolled back.

Figure (1) Shows that Comparisons between two types of eventual consistency had applied to

ScyllaDB, and its throughputs. In this figure the results show that the applied of the configuring the

ALL of eventual Consistency is the best in threads and throughputs rather than Quorum.

Figure (1): Describe the Throughputs Vs. two types of eventual consistency

Figure (2): Describe the Read/Write Operation Throughputs

On the other hand, the second figure shows that the reading and writing factor with the response time.

It is clear from this that the best performance in balancing the load between the reading and writing

process is when the consistency settings are applied in configuration of QUORUM consistency in the

replica set.

0

10000

20000

30000

40000

50000

60000

70000

80000

123456789101112131415

Throughput QUORUM ALL

0

20

40

60

80

100

ONETWOALLQUORUM

La
te

n
cy

 T
im

e
/

m
s

Consistency Types

READ UPDATE

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

97
Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

6. Conclusion

 This Study was aimed to draw a key for the types of consistency of NoSQL databases. Because

NoSQL was used widely at this time and select one of the best models of consistency the eventual

consistency and test it with one of the NoSQL data model is the column model.

7. Future works

 In this study we test and implementation of the eventual consistency for the column NoSQL

database. We recommend that study the other types of consistency with other types of NoSQL data

model. And study the effect of each types of consistency over the truncations throughputs.

 References

[1] M. G. (. S. Sakr (ed.), Large Scale and Big Data:Processing and Management, Boca Raton,: Auerbach

Publications, 2014.

[2] U. G. A. P. E. T. Aleksey Burdakov, "Estimation Models for NoSQL Database Consistency

Characteristics," in 24th Euromicro International Conference on Parallel, Distributed, and Network-

Based Processing, 2016.

[3] U. G. A. P. A.V. Burdakov, "Comparison of table join execution time for parallel DBMS and

MapReduce," in Software Engineering / 811: Parallel and Distributed Computing and Networks /

816: Artificial Intelligence and Applications Proceedings, Innsbruck, Austria, 2014.

[4] R. H. S. Jablonski, "NoSQL Evaluation A Use Case Oriented Survey," in internation conference on

cloud and services computing, 2011.

[5] E. B. E. T. a. M. N. d. O. J. C. Gomes, "Performability Model for Assessing NoSQL DBMS

Consistency," in IEEE International Systems Conference (SysCon), Orlando, FL, USA, 2019.

[6] F. E. a. A. M. H. Attiya, "Limitations of highly-available eventually-consistent data stores," IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp. 141-155, 2017.

[7] S. V. M. J. F. J. M. H. a. I. S. P. Bailis, "Probabilistically bounded staleness for practical partial

quorums," Proc. VLDB Endow., vol. 5, no. 8, pp. 776-787, 2012.

[8] J. W. P. S. Y. J. B. a. J. Z. X. Huang, "An experimental study on tuning the consistency of nosql

systems," oncurrency and Computation: Practice and Experience, vol. 29, no. 12, pp. 29-41, 2017.

[9] I. G. N. E. P. D. K. P. a. C. M. J. Klein, "Performance evaluation of nosql databases: A case study,"

in in Proceedings of the 1st Workshop on Performance Analysis of Big Data Systems, New York,

NY, USA, 2015.

[10] S. I. Y. L. G. A. M. S. P. a. L. B. H. E. Chihoub, "Exploring energy-consistency trade-offs in

cassandra cloud storage system," International Symposium on Computer Architecture and High

Performance Computing , pp. 146-153, 2015.

[11] S. N. J. G. M. R. R. I. G. a. J. M. S. Liu, Quantitative Analysis of Consistency in NoSQL Key-Value

Stores, Cham: Springer International Publishing, 2015, pp. 228-243.

[12] R. Osman and P. Piazzolla, "Modelling Replication in NoSQL Datastores," Cham: Springer

International Publishing, pp. 194-209, 2014.

[13] C. F. d. V. R. P. J. O. Coelho FACL, "pH1: A Transactional Middleware for NoSQL," IEEE 33rd

International Symposium on Reliable Distributed Systems Available, 2014.

 Shendi University Journal of Applied Science, Issue (10) , June 2023 (7): p 85-98

98
Shendi University Journal of Applied Science – ISSN: 1858-2022 – https://applied.ush.edu.sd

[14] O. G. A. a. M. O. I. M. A. Mohamed, "Relational vs. nosql databases: A survey," International

Journal of Computer and Information Technology, vol. 3, no. 3, pp. 598-601, 2014.

[15] J. R. G. Paz, "Introduction to azure cosmos db," in Microsoft Azure Cosmos DB Revealed: A Multi-

Model Database Designed for the Cloud, Berkeley, CA: Apress, 2018, pp. 1-23.

[16] E. R. a. J. W. L. Perkins, Seven databases in seven weeks: a guide to modern databases and the

NoSQL movement, Pragmatic Bookshelf,, 2018.

[17] R. O. a. W. J. K. G. Haughian, "Benchmarking replication in cassandra and mongodb nosql

datastores," in Database and Expert Systems Applications, Cham: Springer International Publishing,,

2016, pp. 152-166.

[18] W. (. ,. 5. 4.-4. Vogels, "Eventually consistent: Building reliable distributed systems at a worldwide

scale demands trade-offs between consistency and availability.," Communications of the ACM, vol.

52, no. 1, pp. 40-44, 2009.

[19] P. B. a. A. Ghodsi, "Eventual consistency today: Limitations, extensions, and beyond," Queue, vol.

11, pp. 03-20, 2013.

[20] P. a. M. V. Viotti, "Consistency in non-transactional distributed storage systems.," ACM Computing

Surveys (CSUR), vol. 49, no. 1, pp. 1-34, 2016.

[21] Jepsen., "Monotonic Reads.," 2022. [Online]. Available:

https://jepsen.io/consistency/models/monotonic-reads. [Accessed 01 01 2023].

[22] J. M. Writes. [Online]. Available: https://jepsen.io/consistency/models/monotonic-writes. [Accessed

02 01 2023].

[23] H. E. Chihoub, "Managing Consistency for Big Data Applications on Clouds: Tradeoffs and Self-

Adaptiveness," THÈSE / ENS CACHAN - BRETAGNE, 2013.

[24] A. O. M. Y. J. T. María Teresa González-Aparicio, "Transaction processing in consistency-aware

user’s applications deployed on NoSQL databases," Human Centric Computer Information System,

vol. 7, no. 7, pp. 2-18, 2017.

[25] S. L. R. C. a. O. H. S. P. Kumar, "Consistencylatency trade-off of the libre protocol: A detailed

study," Advances in Knowledge Discovery and Management, vol. 7, pp. 83-108, 2018.

[26] L. L. a. S. S. E. Casalicchio, "Energy-aware autoscaling algorithms for cassandra virtual data

centers," Cluster Computing, vol. 20, no. 3, pp. 2065-2082, 2017.

[27] G. Harrison, "Consistency models," in Next Generation Databases: NoSQL, NewSQL and Big Data,

Berkeley, CA: Apress, 2015, pp. 127-144.

[28] ScyllaDB, "ScyllaDB Documentation - Consistency," 19 01 2023. [Online]. Available:

https://docs.scylladb.com/stable/cql/consistency.html. [Accessed 19 02 2023].

